A.\[\frac{{\sqrt {9{b^2} + 3{a^2}} }}{3}\]
B. \[\frac{{\sqrt {{b^2} - 3{a^2}} }}{3}\]
C. \[\frac{{\sqrt {9{b^2} - 3{a^2}} }}{3}\]
D. \[\frac{{\sqrt {{b^2} + 3{a^2}} }}{3}\]
Theo bài ra hình chóp S.ABC là hình chóp tam giác đều.
Gọi H là trung điểm của BC, ta có\[SG \bot (ABC),G \in AH\]
Mà\[AH = \frac{{a\sqrt 3 }}{2} \Rightarrow AG = \frac{2}{3}AH = \frac{{a\sqrt 3 }}{3}\]
Tam giác SAG vuông tại G nên theo định lý Pi-ta-go ta có :
\[SG = \sqrt {S{A^2} - A{G^2}} = \sqrt {{b^2} - \frac{{{a^2}}}{3}} = \sqrt {\frac{{3{b^2} - {a^2}}}{3}} = \frac{{\sqrt {9{b^2} - 3{a^2}} }}{3}\]
Đáp án cần chọn là: C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247