Hình chóp đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Gọi H là trung điểm của BC, khoảng cách từ S đến AH bằng:

Câu hỏi :

Hình chóp đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Gọi H là trung điểm của BC, khoảng cách từ S đến AH bằng:

A.2a. 

B.\[a\sqrt 3 .\] 

C.a. 

D.\[a\sqrt 5 .\] 

* Đáp án

* Hướng dẫn giải

Gọi O là chân đường cao của hình chóp nên O là tâm tam giác đáy.

Do đó O là trọng tâm tam giác ABC hay\[O \in AH\]

Ta có \[AO = \frac{2}{3}AH = \frac{2}{3}.3a.\frac{{\sqrt 3 }}{2} = a\sqrt 3 \]

\[{\rm{d}}\left( {S,AH} \right) = SO = \sqrt {S{A^2} - A{O^2}} = a\]Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Khoảng cách từ một điểm đến một đường thẳng !!

Số câu hỏi: 13

Copyright © 2021 HOCTAP247