Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B,

Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, \[AD = 2BC,\;AB = BC = a\sqrt 3 \]. Đường thẳng SA vuông góc với mặt phẳng (ABCD). Gọi E là trung điểm của cạnh SC. Tính khoảng cách d từ điểm E đến mặt phẳng (SAD).

A.\[d = a\sqrt 3 .\]

B. \[d = \frac{{\sqrt 3 }}{2}.\]

C. \[d = \frac{{a\sqrt 3 }}{2}.\]

D. \[d = \sqrt 3 .\]

* Đáp án

* Hướng dẫn giải

Ta có

\[\begin{array}{*{20}{l}}{EC \cap \left( {SAD} \right) = S \Rightarrow \frac{{d\left( {E;\left( {SAD} \right)} \right)}}{{d\left( {C;\left( {SAD} \right)} \right)}} = \frac{{ES}}{{CS}} = \frac{1}{2}}\\{ \Rightarrow d\left( {E;\left( {SAD} \right)} \right) = \frac{1}{2}d\left( {C;\left( {SAD} \right)} \right)}\end{array}\]

Gọi M là trung điểm AM, suy ra ABCM là hình vuông \[ \Rightarrow CM \bot AD\]

Do

\(\left\{ {\begin{array}{*{20}{c}}{CM \bot AD}\\{CM \bot SA}\end{array}} \right. \Rightarrow CM \bot (SAD) \Rightarrow d(C;(SAD)) = CM = AB = a\sqrt 3 \)

Vậy\[d\left( {E;\left( {SAD} \right)} \right) = \frac{1}{2}CM = \frac{{a\sqrt 3 }}{2}.\]

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B,  (ảnh 1)

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Khoảng cách từ điểm đến mặt phẳng !!

Số câu hỏi: 16

Copyright © 2021 HOCTAP247