A.\[{\log _b}a + {\log _a}b < 0\]
B. \[{\log _b}a > 1\]
C. \[{\log _a}b > 0\]
D. \[{\log _a}b + {\log _b}a \ge 2\]
Ta có: 0<a<1 nên hàm số \[y = {\log _a}x\] nghịch biến, do đó b>1 nên \[{\log _a}b < {\log _a}1 = 0\].
Vì b>1 nên hàm số \[y = {\log _b}x\] đồng biến, do đó a<1 nên \[lo{g_b}a < {\log _b}1 = 0\]
Vậy \[{\log _a}b < 0;{\log _b}a < 0 \Rightarrow {\log _a}b + {\log _b}a < 0\]
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247