A.\[y' = \frac{1}{{2\sqrt {x + 1} \left( {1 + \sqrt {x + 1} } \right)}}\]
B. \[y' = \frac{1}{{1 + \sqrt {x + 1} }}\]
C. \[y' = \frac{1}{{\sqrt {x + 1} \left( {1 + \sqrt {x + 1} } \right)}}\]
D. \[y' = \frac{2}{{\sqrt {x + 1} \left( {1 + \sqrt {x + 1} } \right)}}\]
Ta có:
\[y' = {\left[ {\ln \left( {1 + \sqrt {x + 1} } \right)} \right]^\prime } = \frac{{{{\left( {1 + \sqrt {x + 1} } \right)}^\prime }}}{{1 + \sqrt {x + 1} }} = \frac{{\frac{1}{{2\sqrt {x + 1} }}}}{{1 + \sqrt {x + 1} }} = \frac{1}{{2\sqrt {x + 1} \left( {1 + \sqrt {x + 1} } \right)}}\]
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247