A.m>0.
B.\[m \ge - 2\;\;\;\]
C.\[m \ge 0\]
D.m>−2.
Ta có: \[y = \frac{{{{\log }_{\frac{1}{2}}}x - 2}}{{{{\log }_2}x - m}} = \frac{{ - {{\log }_2}x - 2}}{{{{\log }_2}x - m}}\]
Đặt \[t = {\log _2}x\] với\[x \in \left( {0;1} \right) \Rightarrow t \in \left( { - \infty ;0} \right)\]
⇒ Hàm số\[y = \frac{{{{\log }_{\frac{1}{2}}}x - 2}}{{{{\log }_2}x - m}}\] đồng biến trên khoảng (0;1) khi và chỉ khi\[y = f\left( t \right) = \frac{{ - t - 2}}{{t - m}}\] đồng biến trên\[\left( { - \infty ;0} \right)\]
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{y\prime = \frac{{m + 2}}{{{{(t - m)}^2}}} > 0}\\{m \notin ( - \infty ;0)}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m > - 2}\\{m \ge 0}\end{array}} \right. \Leftrightarrow m \ge 0\)
Đáp án cần chọn là: C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247