A.\[m \in \left( { - 2;\,\,0} \right).\]
B. \[m \in \left( { - 5;\, - 2} \right).\]
C. \[m \in \left( {0;\,\,1} \right).\]
D. \[m \in \left( {1;\,\,3} \right).\]
Ta có: \[f\left( x \right) = \ln \left( {{e^x} + m} \right)\]
Điều kiện: \[{e^x} + m > 0.\]
\[\begin{array}{*{20}{l}}{ \Rightarrow f'\left( x \right) = \frac{{{e^x}}}{{{e^x} + m}}}\\{ \Rightarrow f'\left( { - \ln 2} \right) = \frac{3}{2} \Leftrightarrow \frac{{{e^{ - \ln 2}}}}{{{e^{ - \ln 2}} + m}} = \frac{3}{2}}\\{ \Leftrightarrow 2.{e^{ - \ln 2}} = 3.{e^{ - \ln 2}} + 3m}\\{ \Leftrightarrow {{2.2}^{ - \ln e}} = {{3.2}^{ - \ln e}} + 3m}\\{ \Leftrightarrow 2.\frac{1}{2} - 3.\frac{1}{2} = 3m}\\{ \Leftrightarrow m = - \frac{1}{6}.}\\{ \Rightarrow m \in \left( { - 2;\,\,0} \right).}\end{array}\]
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247