Trang chủ Đề thi & kiểm tra Khác Hàm số logarit !! Xét các số thực a, b thỏa mãn a>b>1. Tìm...

Xét các số thực a, b thỏa mãn a>b>1. Tìm giá trị nhỏ nhất Pmin của biểu thức

Câu hỏi :

Xét các số thực a, b thỏa mãn a>b>1. Tìm giá trị nhỏ nhất Pmin của biểu thức \[P = \log _{\frac{a}{b}}^2\left( {{a^2}} \right) + 3{\log _b}\frac{a}{b}\].

A.\[{P_{\min }} = 19\]

B. \[{P_{\min }} = 13\]

C. \[{P_{\min }} = 14\]

D. \[{P_{\min }} = 15\]

* Đáp án

* Hướng dẫn giải

Ta có \[P = \log _{\frac{a}{b}}^2\left( {{a^2}} \right) + 3{\log _b}\frac{a}{b}\]

\[ \Leftrightarrow P = 4\log _{\frac{a}{b}}^2a + 3\left( {{{\log }_b}a - 1} \right) \Leftrightarrow P = \frac{4}{{{{\left( {1 - {{\log }_a}b} \right)}^2}}} + 3\left( {\frac{1}{{{{\log }_a}b}} - 1} \right)\]

Đặt\[{\log _a}b = t \Rightarrow 0 < t < 1\] Khi đó \[P = \frac{4}{{{{\left( {t - 1} \right)}^2}}} + \frac{3}{t} - 3\]

\[P' = \frac{{ - 8}}{{{{\left( {t - 1} \right)}^3}}} - \frac{3}{{{t^2}}} = 0 \Leftrightarrow 3{t^3} - {t^2} + 9t - 3 = 0 \Rightarrow t = \frac{1}{3}\]

\[ \Rightarrow {P_{\min }} = 15\]

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Hàm số logarit !!

Số câu hỏi: 30

Copyright © 2021 HOCTAP247