A.Với \[n \in {N^ * }\] thì \[\sqrt[n]{x} = {x^{\frac{1}{n}}}\] nếu x>0.
B.Với n \[n \in {N^ * }\]thì \[\sqrt[n]{x} = {x^{\frac{1}{n}}}\]nếu \[x \ge 0\].
C.Với \[n \in {N^ * }\] thì n \[\sqrt[n]{x} = {x^{\frac{1}{n}}}\]nếu x0.
D.Với \[n \in {N^ * }\] thì \[\sqrt[n]{x} = {x^{\frac{1}{n}}}\] nếu \[x \ne 0\].
Vì hàm số \[y = {x^{\frac{1}{n}}}\] có số mũ không nguyên nên cơ số phải dương, hay x>0.
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247