A.Đồ thị hàm số luôn đi qua điểm M(1;1)
B.Hàm số luôn đồng biến trên \[\left( {0; + \infty } \right)\;\]
C.Tập xác định của hàm số là \[D = \left( {0; + \infty } \right)\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;\;\]
D.Đồ thị hàm số nhận Ox,Oy làm hai tiệm cận
+ Hàm số \[y = {x^{e - 3}}\] có \[\alpha = e - 3\] không nguyên, suy ra tập xác định là \[(0; + \infty ) \Rightarrow C(0; + \infty )\]⇒C đúng
+ Hàm số đi qua điểm (1;1) suy ra A đúng
+ \[y' = (e - 3).{x^{e - 4}} < 0,\forall x \in \left( {0; + \infty } \right) \Rightarrow B\] sai
+ Đồ thị hàm số có hai đường tiệm cận Ox,Oy suy ra D đúng
Đáp án cần chọn là: B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247