Tính đạo hàm của hàm số

Câu hỏi :

Tính đạo hàm của hàm số \[y = {\left( {2{x^2} + x - 1} \right)^{\frac{2}{3}}}\].

A.\[y' = \frac{{2\left( {4x + 1} \right)}}{{3\sqrt[3]{{2{x^2} + x - 1}}}}\] với \[x \in \left( { - \infty ; - 1} \right) \cup \left( {\frac{1}{2}; + \infty } \right)\]

B. \[y' = \frac{{2\left( {4x + 1} \right)}}{{3\sqrt[3]{{{{\left( {2{x^2} + x - 1} \right)}^2}}}}}\] với\[x \in \left( { - \infty ; - 1} \right) \cup \left( {\frac{1}{2}; + \infty } \right)\]

C. \[y' = \frac{{2\left( {4x + 1} \right)}}{{3\sqrt[3]{{2{x^2} + x - 1}}}}\] với\[x \in R\]

D. \[y' = \frac{{3\left( {4x + 1} \right)}}{{2\sqrt[3]{{{{\left( {2{x^2} + x - 1} \right)}^2}}}}}\] với\[x \in \left( { - \infty ; - 1} \right) \cup \left( {\frac{1}{2}; + \infty } \right)\]

* Đáp án

* Hướng dẫn giải

Ta có:

\[y' = {\left[ {{{\left( {2{x^2} + x - 1} \right)}^{\frac{2}{3}}}} \right]^\prime } = \frac{2}{3}{\left( {2{x^2} + x - 1} \right)^{ - \frac{1}{3}}}{\left( {2{x^2} + x - 1} \right)^\prime }\]

\[ = \frac{2}{3}.\frac{1}{{\sqrt[3]{{2{x^2} + x - 1}}}}\left( {4x + 1} \right) = \frac{{2\left( {4x + 1} \right)}}{{3\sqrt[3]{{2{x^2} + x - 1}}}}\]

Đáp án cần chọn là: A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Hàm số lũy thừa !!

Số câu hỏi: 21

Copyright © 2021 HOCTAP247