A.\[\left( { - \infty ;1} \right)\]
B. \[\left[ {2; + \infty } \right)\]
C. \[\left( { - \infty ;1} \right) \cup \left( {2; + \infty } \right)\]
D. \[\left( {2; + \infty } \right)\]
Đặt \[t = {2^{{x^2} - 2x + 1}} \ge 1\]phương trình đã cho trở thành\[{t^2} - 2mt + 3m - 2 = 0\left( * \right)\]
Với t=1 ta tìm được 1 giá trị của x
Với t>1 ta tìm được 2 giá trị của x
Do đó, phương trình đã cho có 4 nghiệm phân biệt
⇔ Phương trình (*) có 2 nghiệm phân biệt lớn hơn 1
\(\left\{ {\begin{array}{*{20}{c}}{\Delta \prime = {m^2} - (3m - 2) > 0}\\{({t_1} - 1) + ({t_2} - 1) > 0}\\{({t_1} - 1)({t_2} - 1) > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{m^2} - (3m - 2) > 0}\\{{t_1} + {t_2} > 2}\\{{t_1}{t_2} - \left( {{t_1} + {t_2}} \right) + 1 > 0}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{m^2} - 3m + 2 > 0}\\{2m > 2}\\{3m - 2 - 2m + 1 > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\left[ {\begin{array}{*{20}{c}}{m > 2}\\{m < 1}\end{array}} \right.}\\{m > 1}\end{array}} \right. \Leftrightarrow m > 2\)</>
Đáp án cần chọn là: D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247