Các giá trị thực của tham số m để phương trình :

Câu hỏi :

Các giá trị thực của tham số m để phương trình : \[{12^x} + (4 - m){.3^x} - m = 0\;\] có nghiệm thuộc khoảng (−1;0) là:

A.\[m \in (\frac{{17}}{{16}};\frac{5}{2})\]

B. \[m \in [2;4]\]

C. \[m \in (\frac{5}{2};6)\]

D. \[m \in (1;\frac{5}{2})\]

* Đáp án

* Hướng dẫn giải

- Từ các đáp án đã cho, ta thấy giá trị m=2 không thuộc đáp án C nên ta thử m=2 có thỏa mãn bài toán hay không sẽ loại được đáp án. 

Thử với m=2 ta được phương trình : \[{12^x} + {2.3^x} - 2 = 0;f( - 1) = \frac{{ - 5}}{4};f(0) = 1\]

\[ \Rightarrow f(0).f( - 1) < 0\]

Do đó, phương trình có nghiệm trong khoảng (−1;0), mà đáp án C không chứa m=2 nên loại C.

- Lại có giá trị m=3 thuộc đáp án C nhưng không thuộc hai đáp án A và D nên nếu kiểm tra m=3 ta có thể loại tiếp được đáp án.

Thử với m=3 ta được phương trình : \[{12^x} + {3^x} - 3 = 0;f( - 1) = \frac{{ - 31}}{{12}};f(0) = - 1\]

\[ \Rightarrow f(0).f( - 1) > 0\]

Mà hàm số này đồng biến khi m=3 nên\[f(x) < 0,\forall x \in ( - 1;0)\]suy ra phương trình f(x)=0 sẽ không có nghiệm trong (−1;0), loại B.

- Cuối cùng, ta thấy giá trị m=1 thuộc đáp án A và không thuộc đáp án D nên ta sẽ thử m=1 để loại đáp án.

Thử với m=1 ta được phương trình :\[{12^x} + {3.3^x} - 1 = 0;f( - 1) = \frac{{ - 11}}{{12}};\,f(0) = 3 \Rightarrow f(0).f( - 1) < 0\]

Do đó phương trình f(x)=0 sẽ có nghiệm trong (−1;0) nên loại D và chọn A.

Đáp án cần chọn là: A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Phương trình mũ và một số phương pháp giải !!

Số câu hỏi: 33

Copyright © 2021 HOCTAP247