Tìm tích các nghiệm của phương trình

Câu hỏi :

Tìm tích các nghiệm của phương trình \[{(\sqrt 2 - 1)^x} + {(\sqrt 2 + 1)^x} - 2\sqrt 2 = 0\]

A.2

B.−1

C.0

D.1

* Đáp án

* Hướng dẫn giải

Đặt\[t = {\left( {\sqrt 2 - 1} \right)^x}\left( {t > 0} \right)\] phương trình có dạng

\[t + \frac{1}{t} = 2\sqrt 2 \Leftrightarrow {t^2} - 2\sqrt 2 t + 1 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{t = \sqrt 2 + 1\left( {tm} \right)}\\{t = \sqrt 2 - 1\left( {tm} \right)}\end{array}} \right.\]

Khi đó

\[\begin{array}{*{20}{l}}{t = \sqrt 2 + 1 \Rightarrow x = - 1}\\{t = \sqrt 2 - 1 \Rightarrow x = 1}\end{array}\]

Suy ra tích các nghiệm bằng −1.

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Phương trình mũ và một số phương pháp giải !!

Số câu hỏi: 33

Copyright © 2021 HOCTAP247