Có bao nhiêu giá trị nguyên dương của tham số m để phương trình

Câu hỏi :

Có bao nhiêu giá trị nguyên dương của tham số m để phương trình \[{16^x} - {2.12^x} + \left( {m - 2} \right){.9^x} = 0\]có nghiệm dương?

A.1

B.2

C.4

D.3

* Đáp án

* Hướng dẫn giải

Ta có\[{16^x} - {2.12^x} + \left( {m - 2} \right){.9^x} = 0\] (1)

\[ \Leftrightarrow {\left( {\frac{4}{3}} \right)^{2x}} - 2.{\left( {\frac{4}{3}} \right)^x} + m - 2 = 0\] chia cả hai vế cho\[{9^x}\]

Đặt\[{\left( {\frac{4}{3}} \right)^x} = t \Rightarrow x = {\log _{\frac{4}{3}}}t > 0 \Leftrightarrow t > 1\]

Khi đó ta có phương trình \[{t^2} - 2t + m - 2 = 0\left( * \right)\]

Để phương trình (1) có nghiệm dương thì phương trình (*) có nghiệm lớn hơn 1.

(*) có nghiệm\[ \Leftrightarrow {\rm{\Delta '}} = 1 - m + 2 \ge 0 \Leftrightarrow 3 - m \ge 0 \Leftrightarrow m \le 3\]

Với \[m \le 3\] thì (∗) có nghiệm \[{t_1} = 1 - \sqrt {3 - m} ,{t_2} = 1 + \sqrt {3 - m} \]

Để (*) có nghiệm lớn hơn 1 thì

\[1 + \sqrt {3 - m} > 1 \Leftrightarrow \sqrt {3 - m} > 0 \Leftrightarrow 3 - m > 0 \Leftrightarrow m < 3\]

Mà m nguyên dương nên \[m \in \left\{ {1;2} \right\}\]Vậy có 2 giá trị của mm thỏa mãn.

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Phương trình mũ và một số phương pháp giải !!

Số câu hỏi: 33

Copyright © 2021 HOCTAP247