Cho 4^x + 4^− x = 7 . Khi đó biểu thức P = 5 − 2^x − 2^− x / 8 + 4.2^x + 4.2^− x = a/b với a/b tối giản và a , b thuộc Z . Tích a.b có giá trị bằng

Câu hỏi :

Cho \[{4^x} + {4^{ - x}} = 7\]. Khi đó biểu thức \[P = \frac{{5 - {2^x} - {2^{ - x}}}}{{8 + {{4.2}^x} + {{4.2}^{ - x}}}} = \frac{a}{b}\] với \[\frac{a}{b}\] tối giản và \[a,b \in \mathbb{Z}\]. Tích a.b có giá trị bằng

A.10

B.−8

C.8

D.−10

* Đáp án

* Hướng dẫn giải

\[\begin{array}{*{20}{l}}{{4^x} + {4^{ - x}} = 7}\\{{4^x} + {4^{ - x}} + 2 = 9}\\{ \Leftrightarrow {{\left( {{2^x}} \right)}^2} + {{\left( {{2^{ - x}}} \right)}^2} + {{2.2}^x}{{.2}^{ - x}} = 9}\\{ \Leftrightarrow {{\left( {{2^x} + {2^{ - x}}} \right)}^2} = 9}\\{ \Leftrightarrow {2^x} + {2^{ - x}} = 3}\end{array}\]

(do \[{2^x} + {2^{ - x}} > 0\])

Vậy

\[\begin{array}{*{20}{l}}{P = \frac{{5 - {2^x} - {2^{ - x}}}}{{8 + {{4.2}^x} + {{4.2}^{ - x}}}}}\\{\,\,\,\, = \frac{{5 - \left( {{2^x} + {2^{ - x}}} \right)}}{{8 + 4\left( {{2^x} + {2^{ - x}}} \right)}}}\\{\,\,\,\, = \frac{{5 - 3}}{{8 + 4.3}} = \frac{1}{{10}}}\\{ \Rightarrow a = 1,b = 10 \Rightarrow a.b = 1.10 = 10}\end{array}\]

Đáp án cần chọn là: A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Phương trình mũ và một số phương pháp giải !!

Số câu hỏi: 33

Copyright © 2021 HOCTAP247