A.0
B.1
C.2
D.3
Nhân vế với vế của hai phương trình ta được:
\[\left( {{2^x}{{.9}^y}} \right).\left( {{3^x}{{.4}^y}} \right) = 162.48 \Leftrightarrow {6^x}{.36^y} = 162.48 \Leftrightarrow {6^x}{.6^{2y}} = {6^5} \Leftrightarrow x + 2y = 5\]
Khi đó
\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{x + 2y = 5}\\{{3^x}{{.4}^y} = 48}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 5 - 2y}\\{{3^{5 - 2y}}{4^y} = 48}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 5 - 2y}\\{\frac{{{3^5}}}{{{9^y}}}{{.4}^y} = {2^4}.3}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 5 - 2y}\\{{{\left( {\frac{2}{3}} \right)}^{2y}} = {{\left( {\frac{2}{3}} \right)}^4}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{y = 2}\\{x = 1}\end{array}} \right.\end{array}\)
Vậy hệ có nghiệm duy nhất (1;2).
Đáp án cần chọn là: B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247