Trừ vế với vế của phương trình đầu cho phương trình hai ta được:
\[{2^x} - {2^y} + 2x - 2y = y - x \Leftrightarrow {2^x} + 3x = {2^y} + 3y\]
Xét hàm số\[f\left( t \right) = {2^t} + 3t\]có \[f'\left( t \right) = {2^t}\ln 2 + 3 > 0,\forall t \in R\]nên hàm số đồng biến trên RR.
Do đó \[f\left( x \right) = f\left( y \right) \Leftrightarrow x = y \Rightarrow {2^x} + 2x = 3 + y \Leftrightarrow {2^x} + x = 3\]
Xét hàm\[g\left( x \right) = {2^x} + x\]có \[g'\left( x \right) = {2^x}\ln 2 + 1 > 0,\forall x \in R\]nên hàm số\[y = g\left( x \right)\]đồng biến trên R.
Dễ thấy\[g\left( 1 \right) = 3\] nên x=1 là nghiệm duy nhất của phương trình hay (1;1) là nghiệm duy nhất của hệ.
Vậy \[{x_0} = {y_0} = 1 > 0\]
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247