Số nghiệm của hệ phương trình

Câu hỏi :

Số nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{3^x} - {3^y} = y - x}\\{{x^2} + xy + {y^2} = 12}\end{array}} \right.\) là:

A.0

B.1

C.2

D.3

* Đáp án

* Hướng dẫn giải

Phương trình\[{3^x} - {3^y} = y - x \Leftrightarrow {3^x} + x = {3^y} + y\]

Xét hàm\[f\left( t \right) = {3^t} + t\]có\[f'\left( t \right) = {3^t}\ln 3 + 1 > 0,\forall t \in R\]nên hàm số đồng biến trên R.

Do đó \[f\left( x \right) = f\left( y \right) \Leftrightarrow x = y\]

Thay y=x vào phương trình\[{x^2} + xy + {y^2} = 12\]ta được:

\[{x^2} + {x^2} + {x^2} = 12 \Leftrightarrow 3{x^2} = 12 \Leftrightarrow x = \pm 2 \Rightarrow y = \pm 2\]

Vậy hệ có nghiệm (2;2),(−2;−2).

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Hệ phương trình mũ và logarit !!

Số câu hỏi: 11

Copyright © 2021 HOCTAP247