Cho hàm số y=f(x) xác định và có đạo hàm trên (a;b). Chọn kết luận đúng:

Câu hỏi :

Cho hàm số y=f(x) xác định và có đạo hàm trên (a;b). Chọn kết luận đúng:

A.Nếu \[f\prime (x) \ge 0,\forall x \in (a;b)\;\] thì f(x) đồng biến trên (a;b).

B.Nếu \[f\prime (x) \ge 0,\forall x \in (a;b)\;\]thì f(x) đồng biến trên (a;b).

C.Nếu \[f\prime (x) = 0,\forall x \in (a;b)\;\] thì f(x)=0 trên (a;b).

D.Nếu \[f\prime (x) \le 0,\forall x \in (a;b)\;\] thì f(x) không đổi trên (a;b).

* Đáp án

A

* Hướng dẫn giải

Đáp án A: Nếu \[f\prime (x) \ge 0,\forall x \in (a;b)\;\] thì f(x) chưa chắc đã đồng biến trên (a;b), chẳng hạn hàm số\[y = f\left( x \right) = 2\]  có \[f'\left( x \right) = 0 \ge 0,\forall x\] nhưng đây là hàm hằng nên không đồng biến, do đó A sai.

Đáp án B: Nếu \[f\prime (x) > 0,\forall x \in (a;b)\;\] thì f(x) đồng biến trên (a;b) đúng.

Đáp án C: Nếu \[f\prime (x) = 0,\forall x \in (a;b)\;\] thì f(x) không đổi trên (a;b), chưa chắc nó đã có giá trị bằng 0 nên C sai.

Đáp án D: Nếu \[f\prime (x) \le 0,\forall x \in (a;b)\;\] thì f(x) không đổi trên (a;b) sai.

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Sự đồng biến, nghịch biến !!

Số câu hỏi: 18

Copyright © 2021 HOCTAP247