A.Trên khoảng (−1;1) thì f(x) đồng biến
B.Trên khoảng (−3;−1) thì f(x) nghịch biến
C.Trên khoảng (5;10) thì f(x) nghịch biến
D.Trên khoảng (−1;3) thì f(x) nghịch biến
A
\[f\left( x \right) = - 2{x^3} + 3{x^2} + 12x - 5 \Rightarrow f'\left( x \right) = - 6{x^2} + 6x + 12 = 0 \Leftrightarrow x = 2;x = - 1\]
Ta có: \[y' < 0,\forall x \in \left( { - \infty ; - 1} \right) \cup \left( {2; + \infty } \right)\]nên hàm số nghịch biến trên các khoảng\[\left( { - \infty ; - 1} \right);\left( {2; + \infty } \right)\]và\[y' > 0,\forall x \in \left( { - 1;2} \right)\] nên nó đồng biến trên khoảng (−1;2).</>
Đối chiếu với các đáp án đã cho ta thấy các Đáp án A, B, C đều đúng vì các khoảng đó đều là khoảng nằm trong khoảng nghịch biến hoặc đồng biến của hàm số, chỉ có đáp án D sai.
Đáp án cần chọn là: D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247