Câu hỏi :

Tìm m để hàm số \[y' = \frac{{{x^3}}}{3} - 2m{x^2} + 4mx + 2\] nghịch biến trên khoảng (−2;0).

A.\[m < - \frac{1}{3}\]

B.m-13

C.m>-13

D. m-13

* Đáp án

* Hướng dẫn giải

Ta có:\[y' = {x^2} - 4mx + 4m\]

Hàm số nghịch biến trên

(vì −2<x<0)

Xét hàm\[g\left( x \right) = \frac{{{x^2}}}{{x - 1}}\]trên (−2;0) ta có:

\[g\prime (x) = \frac{{{x^2} - 2x}}{{{{(x - 1)}^2}}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0 \notin ( - 2;0)}\\{x = 2 \notin ( - 2;0)}\end{array}} \right. \Rightarrow g\prime (x) > 0,\forall x \in ( - 2;0)\]

Do đó hàm số y=g(x) đồng biến trên (−2;0)

Suy ra\[g\left( { - 2} \right) < g\left( x \right) < g\left( 0 \right),\forall x \in \left( { - 2;0} \right)\] hay\[ - \frac{4}{3} < g\left( x \right) < 0,\forall x \in \left( { - 2;0} \right)\]

Khi đó \[4m \le g\left( x \right),\forall x \in \left( { - 2;0} \right) \Leftrightarrow 4m \le - \frac{4}{3} \Leftrightarrow m \le - \frac{1}{3}\]Vậy

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Sự đồng biến, nghịch biến !!

Số câu hỏi: 18

Copyright © 2021 HOCTAP247