A. \[\left( {4; + \infty } \right)\]
B.(0;4).
C. \[\left( { - \infty ; - 2} \right)\]
D.(−2;0).
Đặt\[h\left( x \right) = 4f\left( x \right) + {x^2}\]ta có\[h'\left( x \right) = 4f\left( x \right) + 2x = 4\left[ {f'\left( x \right) + \frac{x}{2}} \right]\]
Số nghiệm của phương trình \[h\prime (x) = 0\;\] là số giao điểm của đồ thị hàm số \[y = f\prime (x)\;\] và đường thẳng \[y = - \frac{x}{2}\].
Vẽ đồ thị hàm số \[y = f\prime (x)\;\] và đường thẳng \[y = - \frac{x}{2}\] trên cùng mặt phẳng tọa độ ta có:
Dựa vào đồ thị hàm số ta thấy \[h\prime (x) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - 2}\\{x = 0}\\{x = 4}\end{array}} \right.\]
Khi đó ta có BBT hàm số \[y = h(x)\]:
Khi đó ta suy ra được BBT hàm số \[g\left( x \right) = \left| {h\left( x \right)} \right|\] như sau:
Dựa vào BBT và các đáp án ta thấy hàm số g(x) đồng biến trên (0;4)
Đáp án cần chọn là: B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247