Cho hàm số y=f(x) liên tục trên

Câu hỏi :

Cho hàm số y=f(x) liên tục trên \(\mathbb{R}\)và có đạo hàm \[f\prime (x) = {x^2}(x - 2)({x^2} - 6x + m)\;\] với mọi \[x \in \mathbb{R}\]. Có bao nhiêu số nguyên m thuộc đoạn \[\left[ { - 2019;2019} \right]\;\]để hàm số \[g(x) = f(1 - x)\;\] nghịch biến trên khoảng \[\left( { - \infty ; - 1} \right)?\]

A.2010.

B.2012.

C.2011.

D.2009.

* Đáp án

* Hướng dẫn giải

Ta có:

\[g'\left( x \right) = {\left[ {f\left( {1 - x} \right)} \right]^\prime } = {\left( {1 - x} \right)^\prime }f'\left( {1 - x} \right) = - f'\left( {1 - x} \right)\]

\[ = - {\left( {1 - x} \right)^2}\left( {1 - x - 2} \right)\left[ {{{\left( {1 - x} \right)}^2} - 6\left( {1 - x} \right) + m} \right]\]

\[\begin{array}{l} = - {\left( {1 - x} \right)^2}\left( { - 1 - x} \right)\left( {{x^2} + 4x + m - 5} \right)\\ = {\left( {x - 1} \right)^2}\left( {x + 1} \right)\left( {{x^2} + 4x + m - 5} \right)\end{array}\]

Hàm số g(x) nghịch biến trên \[\left( { - \infty ; - 1} \right)\]\[ \Leftrightarrow g'\left( x \right) \le 0,\forall x \in \left( { - \infty ; - 1} \right) \Leftrightarrow \left( {x + 1} \right)\left( {{x^2} + 4x + m - 5} \right) \le 0,\forall x \in \left( { - \infty ; - 1} \right)\]

\[ \Leftrightarrow {x^2} + 4x + m - 5 \ge 0,\forall x \in \left( { - \infty ; - 1} \right)\](do\[x + 1 < 0,\forall x \in \left( { - \infty ; - 1} \right)\])

\[ \Leftrightarrow h\left( x \right) = {x^2} + 4x - 5 \ge - m\,\,\forall x \in \left( { - \infty ; - 1} \right)\]

\[ \Leftrightarrow - m \le \mathop {\min }\limits_{\left( { - \infty ; - 1} \right]} h\left( x \right)\]

Ta có\[h'\left( x \right) = 2x + 4 = 0 \Leftrightarrow x = - 2\]

BBT:

Cho hàm số y=f(x) liên tục trên  (ảnh 1)

Dựa vào BBT ta có \[ - m \le - 9 \Leftrightarrow m \ge 9\]

Mà\[m \in \left[ { - 2019;2019} \right]\]và m nguyên nên \[m \in \left[ {9;10;11;...;2019} \right]\] hay có \[2019 - 9 + 1 = 2011\]giá trị của m thỏa mãn.

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Sự đồng biến, nghịch biến !!

Số câu hỏi: 18

Copyright © 2021 HOCTAP247