Điểm thuộc đường thẳng d : x − y − 1 = 0 cách đều hai điểm cực trị của đồ thị hàm số y = x^3 − 3 x^2 + 2 là

Câu hỏi :

Điểm thuộc đường thẳng \[d:x - y - 1 = 0\] cách đều hai điểm cực trị của đồ thị hàm số \[y = {x^3} - 3{x^2} + 2\;\] là

A.(2;1).

B. (0;−1).

C.(1;0).

D.(-1;2)

* Đáp án

* Hướng dẫn giải

Ta có

\[\begin{array}{l}y = {x^3} - 3{x^2} + 2 \to y\prime = 3{x^2} - 6x;y\prime = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0 \Rightarrow y(0) = 2}\\{x = 2 \Rightarrow y(2) = - 2}\end{array}} \right.\end{array}\]

Suy ra tọa độ hai điểm cực trị của đồ thị hàm số là\[A\left( {0;2} \right),\,\,B\left( {2; - \,2} \right).\]

Gọi\[M \in d \Rightarrow M\left( {a;a - 1} \right),\] khi đó\(\left\{ {\begin{array}{*{20}{c}}{MA = \sqrt {{a^2} + {{(a - 3)}^2}} }\\{MB = \sqrt {{{(a - 2)}^2} + {{(a + 1)}^2}} }\end{array}} \right.\)

Mà M cách đều A,B

Suy ra\[M{A^2} = M{B^2} \Leftrightarrow {a^2} + {\left( {a - 3} \right)^2} = {\left( {a - 2} \right)^2} + {\left( {a + 1} \right)^2} \Leftrightarrow a = 1 \Rightarrow M(1;0).\]

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Cực trị của hàm số !!

Số câu hỏi: 70

Copyright © 2021 HOCTAP247