Cho hàm số f ( x ) = a x^3 + b x^2 + c x + d (với a , b , c , d ∈ R và a ≠ 0 ) có đồ thị như hình vẽ. Số điểm cực trị của hàm số g ( x ) = f ( − 2 x^2 + 4 x ) là

Câu hỏi :

Cho hàm số \[f\left( x \right) = a{x^3} + b{x^2} + cx + d\] (với \[a,b,c,d \in \mathbb{R}\;\] và \[a \ne 0\]) có đồ thị như hình vẽ. Số điểm cực trị của hàm số \[g(x) = f( - 2{x^2} + 4x)\;\] là

A.2.

B.5.

C.4.

D.3.

* Đáp án

* Hướng dẫn giải

Từ đồ thị ta thấy, hàm số f(x) đạt cực trị tại các điểm x=-2 và x=0 nên f'(-2)=0, f'(0)=0.

Ta có: \[g'\left( x \right) = \left( { - 4x + 4} \right)f'\left( { - 2{x^2} + 4x} \right)\]

Cho\[g\prime (x) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{ - 4x + 4 = 0}\\{f\prime ( - 2{x^2} + 4x) = 0}\end{array}} \right.( * )\]

Do\[f'\left( { - 2} \right) = 0,f'\left( 0 \right) = 0\]\[ \Rightarrow f\prime ( - 2{x^2} + 4x) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{ - 2{x^2} + 4x = 0}\\{ - 2{x^2} + 4x = - 2}\end{array}} \right.\]

Do đó,

\(\left( * \right) \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{ - 4x + 4 = 0}\\{ - 2{x^2} + 4x = - 2}\\{ - 2{x^2} + 4x = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 1 \pm \sqrt 2 }\\{x = 0}\\{x = 2}\end{array}} \right.\)

Các nghiệm này đều là nghiệm đơn.

Do đó \[g\prime (x)\;\] đổi dấu qua 5 điểm trên.

Vậy hàm số y=g(x) có 5 điểm cực trị.

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Cực trị của hàm số !!

Số câu hỏi: 70

Copyright © 2021 HOCTAP247