Cho hàm số f(x) có đạo hàm

Câu hỏi :

Cho hàm số f(x) có đạo hàm \[f\prime (x) = x{(x + 2)^2}({x^2} - x - 2),\forall x \in R\]. Hàm số f(x) có bao nhiêu điểm cực trị?

* Đáp án

* Hướng dẫn giải

Bước 1: Tìm nghiệm của\[f'(x) = 0\]

Ta có:\[f'\left( x \right) = x{\left( {x + 2} \right)^2}\left( {{x^2} - x - 2} \right)\,\,\forall x \in \mathbb{R}\]

\[\begin{array}{l} \Rightarrow f\prime (x) = 0\\ \Leftrightarrow x{(x + 2)^2}({x^2} - x - 2) = 0\\ \Leftrightarrow x{(x + 2)^2}(x + 1)(x - 2) = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x + 2 = 0}\\{x + 1 = 0}\\{x - 2 = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = - 2}\\{x = - 1}\\{x = 2}\end{array}} \right.\end{array}\]

Bước 2: Xác định số nghiệm bội lẻ của phương trình \[f'\left( x \right) = 0\].

Trong đó: \[x = - 2\] là nghiệm bội 2 nên x=−2 không là điểm cực trị của hàm số \[y = f\left( x \right).\]

Còn lại: \[x = 0;x = - 1;x = 2\;\] là các nghiệm bội 1 của hàm số nên chúng là các điểm cực trị của hàm số \[y = f\left( x \right).\]

Vậy hàm số \[y = f\left( x \right)\] có 3 điểm cực trị.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Cực trị của hàm số !!

Số câu hỏi: 70

Copyright © 2021 HOCTAP247