Tìm tất cả các giá trị của m để đồ thị hàm số

Câu hỏi :

Tìm tất cả các giá trị của m để đồ thị hàm số \[y = - {x^4} + 2m{x^2}\;\] có 3 điểm cực trị ?

A.m<0

B.m=0                

C.m>0

D.

* Đáp án

* Hướng dẫn giải

\[\begin{array}{l}y = - {x^4} + 2m{x^2} \Rightarrow y' = - 4{x^3} + 4mx = - 4x\left( {{x^2} - m} \right)\\ \Rightarrow y\prime = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{{x^2} = m}\end{array}} \right.\end{array}\]

Để hàm số có ba điểm cực trị thì phương trình \[y\prime = 0\;\] có ba nghiệm phân biệt hay phương trình \[{x^2} = m\;\] có hai nghiệm phân biệt \[ \ne 0\;\]hay \[m > 0\]

Đáp án cần chọn là: C

Copyright © 2021 HOCTAP247