Tìm tất cả các giá trị của m để hàm số

Câu hỏi :

Tìm tất cả các giá trị của m để hàm số \[y = - \frac{1}{3}{x^3} + \frac{{m{x^2}}}{3} + 4\;\] đạt cực đại tại x=2?

A.m=1

B.m=2

C.m=3

D.m=4

* Đáp án

* Hướng dẫn giải

TXĐ \[D = \mathbb{R}\]

\[y' = - {x^2} + \frac{2}{3}mx \Rightarrow y'' = - 2x + \frac{2}{3}m\]Hàm số đã cho đạt cực đại tại x=2

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{y\prime (2) = 0}\\{y\prime \prime (2) < 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - {2^2} + \frac{2}{3}m.2 = 0}\\{ - 2.2 + \frac{2}{3}m. < 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 4 + \frac{4}{3}m = 0}\\{ - 4 + \frac{2}{3}m < 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m = 3}\\{m < 6}\end{array}} \right. \Leftrightarrow m = 3\)

Đáp án cần chọn là: C

Copyright © 2021 HOCTAP247