A.m=1
B.\[m = \frac{1}{2}\]
C. \[m = 1;m = \frac{1}{2}\]
D. \[m = 3\]
\[y' = {x^2} - 2mx + 2m - 4\]
Để hàm số có cực đại cực tiểu \[ \Leftrightarrow {\rm{\Delta '}} > 0,\forall m \Leftrightarrow {m^2} - 2m + 4 > 0,\forall m\]
Khi đó phương trình \[y' = 0\] có hai nghiệm \[{x_1},{x_2}\] thỏa mãn \(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = - \frac{b}{a} = 2m}\\{{x_1}{x_2} = \frac{c}{a} = 2m - 4}\end{array}} \right.\)
Ta có:
\[x_1^2 + x_2^2 = {x_1}.{x_2} + 10\]
\[ \Leftrightarrow {({x_1} + {x_2})^2} - 2{x_1}{x_2} - {x_1}{x_2} - 10 = 0\]
\[ \Leftrightarrow {({x_1} + {x_2})^2} - 3{x_1}{x_2} - 10 = 0\]
\[ \Leftrightarrow {(2m)^2} - 3.(2m - 4) - 10 = 0\]
\[ \Leftrightarrow 4{m^2} - 6m + 2 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 1}\\{m = \frac{1}{2}}\end{array}} \right.\]
Đáp án cần chọn là: C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247