Tìm m để (Cm) : y = x^4 − 2 m x^2 + 2 có 3 điểm cực trị là 3 đỉnh của một tam giác vuông cân.

Câu hỏi :

Tìm m để (Cm) : \[y = {x^4} - 2m{x^2} + 2\;\] có 3 điểm cực trị là 3 đỉnh của một tam giác vuông cân.

A.m=−4                     

B.m=−1                     

C.m=1                                 

D.m=3

* Đáp án

* Hướng dẫn giải

Ta có: \[y\prime = 4{x^3} - 4mx = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{{x^2} = m}\end{array}} \right.\]

Đồ thị hàm số có 3 điểm cực trị ⇔ pt \[y' = 0\] có 3 nghiệm phân biệt \[ \Leftrightarrow m > 0\]

\( \Rightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = \sqrt m }\\{x = - \sqrt m }\end{array}} \right.\)

⇒ Đồ thị hàm số có 3 điểm cực trị là: \[A(0;2);\,\,\,B( - \sqrt m ;2 - {m^2});\,\,C(\sqrt m ;2 - {m^2})\]

\[\overrightarrow {AB} = \left( { - \sqrt m ; - {m^2}} \right),\overrightarrow {AC} = \left( {\sqrt m ; - {m^2}} \right)\]

Dễ thấy \[\Delta ABC\] cân tại A, để \[\Delta ABC\] vuông cân thì nó phải vuông tại A

\[ \Rightarrow \overrightarrow {AB} .\overrightarrow {AC} = 0 \Leftrightarrow - m + {m^4} = 0 \Leftrightarrow m({m^3} - 1) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 0}\\{{m^3} - 1 = 0}\end{array}} \right.\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 0}\\{m = 1}\end{array}} \right.\)

Kết hợp điều kiện m>0 ta có m=1

Đáp án cần chọn là: C

Copyright © 2021 HOCTAP247