A.\[y = mx + 3m - 1\]
B. \[y = - 2\left( {{m^2} + 1} \right)x + m\]
C. \[y = \left( {2{m^3} - 2} \right)x\]
D. \[y = - 2x + 2m\]
Có: \[y\left( x \right) = {x^3} + 3m{x^2} - 3x \Rightarrow y'\left( x \right) = 3{x^2} + 6mx - 3\]
Phương trình đường thẳng dd đi qua 2 cực trị của (C) nên \[\left( {{x_o};{y_o}} \right) \in d\] thỏa mãn:
\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{y\prime ({x_o}) = 0}\\{{y_o} = x_0^3 + 3mx_0^2 - 3{x_o}}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{3x_0^2 + 6m{x_o} - 3 = 0}\\{{y_o} = {x_o}(x_0^2 + 2m_o^2) - 3{x_0} + mx_0^2}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x_0^2 + 2m{x_o} = 1}\\{{y_o} = - 2{x_o} + mx_o^2}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x_o^2 = - 2m{x_o} + 1}\\{{y_o} = - 2{x_o} + m( - 2m{x_o} + 1)}\end{array}} \right.\\ \Rightarrow {y_o} = - 2({m^2} + 1){x_o} + m\end{array}\)
Đáp án cần chọn là: B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247