Cho hàm số y = 2 x^3 − 3 ( m + 1 ) x^2 + 6 m x . . Tìm mm để đồ thị hàm số có hai điểm cực trị là A,B sao cho đường thẳng AB vuông góc với d : x − y − 9 = 0

Câu hỏi :

Cho hàm số \[y = 2{x^3} - 3\left( {m + 1} \right){x^2} + 6mx.\]. Tìm mm để đồ thị hàm số có hai điểm cực trị là A,B sao cho đường thẳng AB vuông góc với \[d:x - y - 9 = 0\]

A.m=0 

B.m=−1 

C.m=0;m=2 

D.m=1;m=2

* Đáp án

* Hướng dẫn giải

\[y' = 6{x^2} - 6\left( {m + 1} \right)x + 6m\]

Đồ thị hàm số có hai điểm cực trị A,B ⇔ phương trình \[y' = 0\] có hai nghiệm phân biệt

\[ \Leftrightarrow {\rm{\Delta '}} = 9{\left( {m + 1} \right)^2} - 36m > 0 \Leftrightarrow 9{m^2} - 18m + 9 > 0 \Leftrightarrow 9{\left( {m - 1} \right)^2} > 0 \Leftrightarrow m \ne 1\]

Khi đó,

\[y = y'.\left( {\frac{1}{3}x - \frac{{m + 1}}{6}} \right) + \left[ {4m - {{\left( {m + 1} \right)}^2}} \right]x + m\left( {m + 1} \right)\]

Đường thẳng \[AB:y = \left[ {4m - {{\left( {m + 1} \right)}^2}} \right]x + m\left( {m + 1} \right)\] có hệ số góc\[k = 4m - {\left( {m + 1} \right)^2}\]

Đường thẳng\[d:\,y = x - 9\] có hệ số góc\[k = 1\]

\[\begin{array}{l}AB \bot d\\ \Leftrightarrow [4m - {(m + 1)^2}].1 = - 1\\ \Leftrightarrow 4m - {m^2} - 2m - 1 = - 1\\ \Leftrightarrow - {m^2} + 2m = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 0}\\{m = 2}\end{array}} \right.\end{array}\]

Đáp án cần chọn là: C

Copyright © 2021 HOCTAP247