Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên, một hàm số g(x) xác định theo f(x) có đạo hàm

Câu hỏi :

Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ bên, một hàm số g(x) xác định theo f(x) có đạo hàm \[g\prime (x) = f(x) + m\]. Tìm tất cả các giá trị thực của tham số mm để hàm số g(x) có duy nhất một cực trị.

A.−4<m<0


</m<0

B. hoặc 

C.m>0 hoặc m<−4


</−4

D.

* Đáp án

* Hướng dẫn giải

Hàm số g(x) có duy nhất một cực trị \[ \Leftrightarrow \,pt\,g'\left( x \right) = 0\]có đúng một nghiệm \[{x_0}\] thỏa mãn g′(x) đổi dấu qua nghiệm đó.

Theo đề bài ta có:  \[g'\left( x \right) = f\left( x \right) + m\]

\[ \Rightarrow g'\left( x \right) = 0 \Leftrightarrow f\left( x \right) + m = 0 \Leftrightarrow f\left( x \right) = - m\]=>Số nghiệm của pt \[g\prime (x) = 0\;\] là số giao điểm của đồ thị hàm số y=f(x) và đường thẳng y=−m.

Quan sát đồ thị ta thấy đường thẳng y=−m cắt đồ thị hàm số y=f(x)) tại một điểm duy nhất

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{ - m < 0}\\{ - m > 4}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m > 0}\\{m < - 4}\end{array}} \right.\).

Ngoài ra, với m=0 hoặc m=−4 thì đồ thị hàm số y=f(x) có hai điểm chung với đường thẳng y=m nhưng một điểm là điểm tiếp xúc nên phương trình \[g\prime (x) = 0\;\] có hai nghiệm phân biệt, trong đó có một nghiệm kép và một nghiệm đơn.

Nên trong trường hợp này, hàm số y=g(x) vẫn chỉ có một cực trị.

Vậy \[m \ge 0\;\] hoặc \[m \le - 4\].

Đáp án cần chọn là: B

Copyright © 2021 HOCTAP247