Cho hàm số y = 2 x^3 + m x^2 − 12 x − 13 với m là tham số thực. Tìm giá trị của mm để đồ thị hàm số có hai điểm cực trị thỏa mãn khoảng cách từ chúng đến trục tung bằng nhau.

Câu hỏi :

Cho hàm số \[y = 2{x^3} + m{x^2} - 12x - 13\] với m là tham số thực. Tìm giá trị của mm để đồ thị hàm số có hai điểm cực trị thỏa mãn khoảng cách từ chúng đến trục tung bằng nhau.

A.m=2

B.m=−1

C.m=1

D.m=0

* Đáp án

* Hướng dẫn giải

Ta có\[y' = 6{x^2} + 2mx - 12.\]

Do\[{\rm{\Delta '}} = {m^2} + 72 > 0,\forall m \in \mathbb{R}\]nên hàm số luôn có hai điểm cực trị\[{x_1},{x_2}\]với\[{x_1},{x_2}\]là hai nghiệm của phương trình \[y' = 0\].

Theo định lí Viet, ta có \[{x_1} + {x_2} = - \frac{m}{3}.\]

Gọi\[A\left( {{x_1};{y_1}} \right)\] và \[B\left( {{x_2};{y_2}} \right)\]  là hai điểm cực trị của đồ thị hàm số.

Yêu cầu bài toán \[ \Leftrightarrow \left| {{x_1}} \right| = \left| {{x_2}} \right| \Leftrightarrow {x_1} = - {x_2}\]  (do\[{x_1} \ne {x_2}\])

\[ \Leftrightarrow {x_1} + {x_2} = 0 \Leftrightarrow - \frac{m}{3} = 0 \Leftrightarrow m = 0.\]

Đáp án cần chọn là: D

Copyright © 2021 HOCTAP247