Cho hàm số y = x^3 − 3 m x^2 + 4 m 2 − 2 với m là tham số thực. Tìm giá trị của mm để đồ thị hàm số có hai điểm cực trị A,B sao cho I(1;0) là trung điểm của đoạn thẳng AB.

Câu hỏi :

Cho hàm số \[y = {x^3} - 3m{x^2} + 4{m^2} - 2\] với m là tham số thực. Tìm giá trị của mm để đồ thị hàm số có hai điểm cực trị A,B sao cho I(1;0) là trung điểm của đoạn thẳng AB.

A.m=0

B.m=−1

C.m=1

D.m=2.

* Đáp án

* Hướng dẫn giải

Ta có\[y\prime = 3{x^2} - 6mx = 3x(x - 2m);y\prime = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 2m}\end{array}} \right.\]

Đề đồ thị hàm số có hai điểm cực trị \[ \Leftrightarrow m \ne 0\]

Khi đó tọa độ hai điểm cực trị là\[A\left( {0;4{m^2} - 2} \right)\] và \[B\left( {2m;4{m^2} - 4{m^3} - 2} \right)\]

Do I(1;0) là trung điểm của AB nên\(\left\{ {\begin{array}{*{20}{c}}{{x_A} + {x_B} = 2{x_I}}\\{{y_A} + {y_B} = 2{y_I}}\end{array}} \right.\)

\(\left\{ {\begin{array}{*{20}{c}}{0 + 2m = 2}\\{(4{m^2} - 2) + (4{m^2} - 4{m^3} - 2) = 0}\end{array}} \right. \Leftrightarrow m = 1\) thỏa mãn.

Đáp án cần chọn là: C

Copyright © 2021 HOCTAP247