A.\[m = 2\]
B. \[m = \frac{{31}}{{27}}\]
C. \[m > \frac{3}{2}\]
D. \[m = 1\]
TXĐ: \[D = \mathbb{R}\]
\[y' = 3{x^2} - 6mx.\]
Ta có:\[y\prime = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0 \Rightarrow y = 6}\\{x = 2m \Rightarrow y = - 4{m^3} + 6}\end{array}} \right.\]
Xét TH1: m=0. Hàm số đồng biến trên\[\left[ {0;3} \right] \Rightarrow \mathop {Min}\limits_{\left[ {0;3} \right]} y = y\left( 0 \right) = 6 \Rightarrow \] loại.
Xét TH2: Khi đó, hàm số nghịch biến trên\[\left[ {0;3} \right] \subset \left[ {0;2m} \right]\]\[ \Rightarrow \mathop {Min}\limits_{\left[ {0;3} \right]} y = y\left( 3 \right) = 33 - 27m = 2 \Rightarrow m = \frac{{31}}{{27}} < \frac{3}{2}\](loại)
Xét TH3: \[\frac{3}{2} > m > 0 \Rightarrow 3 > 2m > 0\]thì đồ thị hàm số có điểm cực đại là (0;6) và điểm cực tiểu là \[\left( {2m, - 4{m^3} + 6} \right).\]Khi đó , GTNN trên\[\left[ {0;3} \right]\]là \[y\left( {2m} \right) = - 4{m^3} + 6\]
\[ \Rightarrow - 4{m^3} + 6 = 2 \Leftrightarrow {m^3} = 1 \Leftrightarrow m = 1\](thỏa mãn)
Xét TH4: \[m < 0 \Rightarrow \left( {0;6} \right)\]là điểm cực tiểu của đồ thị hàm số và trên \[\left[ {0;3} \right]\]hàm số đồng biến.\[ \Rightarrow {y_{min}} = 6 \Rightarrow \]loại.
Vậy m=1 là giá trị cần tìm.
Đáp án cần chọn là: D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247