Câu hỏi :

Cho f(x) mà đồ thị hàm số \[y = f\prime (x)\;\] như hình vẽ bên

A.\[m < f\left( 0 \right)\]

B. \[m < f\left( 1 \right) - 1\]

C. \[m < f\left( { - 1} \right) + 1\]

D. \[m < f\left( 2 \right)\]

* Đáp án

* Hướng dẫn giải

Bất phương trình \[f(x) > sin\frac{{\pi x}}{2} + m\;\] nghiệm đúng với mọi \[x \in [ - 1;3]\] khi và chỉ khi:

\[f(x) > sin\frac{{\pi x}}{2} + m\forall x \in [ - 1;3] \Leftrightarrow g(x) = f(x) - sin\frac{{\pi x}}{2} > m\forall x \in [ - 1;3] \Rightarrow m < \mathop {min}\limits_{[ - 1;3]} g(x)\]

Từ đồ thị hàm số\[y = f'\left( x \right)\] ta suy ra BBT đồ thị hàm số \[y = f\left( x \right)\] như sau:

Cho f(x) mà đồ thị hàm số  (ảnh 2)

Dựa vào BBT ta thấy\[f\left( x \right) \ge f\left( 1 \right)\,\,\forall x \in \left[ { - 1;3} \right]\]

\[\begin{array}{*{20}{l}}{x \in \left[ { - 1;3} \right] \Rightarrow \frac{{\pi x}}{2} \in \left[ { - \frac{\pi }{2};\frac{{3\pi }}{2}} \right] \Rightarrow - 1 \le \sin \frac{{\pi x}}{2} \le 1}\\{ \Leftrightarrow - 1 \le - \sin \frac{{\pi x}}{2} \le 1}\end{array}\]

\[ \Rightarrow f\left( 1 \right) - 1 \le f\left( x \right) - \sin \frac{{\pi x}}{2} \Leftrightarrow g\left( x \right) \ge f\left( 1 \right) - 1 \Rightarrow \mathop {\min }\limits_{\left[ { - 1;3} \right]} g\left( x \right) = f\left( 1 \right) - 1\]

Vậy\[m < f\left( 1 \right) - 1\]

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giá trị lớn nhất, nhỏ nhất của hàm số !!

Số câu hỏi: 28

Copyright © 2021 HOCTAP247