Cho hàm số f(x) liên tục trên R, có bảng biến thiên như hình vẽ dưới đây

Câu hỏi :

Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\), có bảng biến thiên như hình vẽ dưới đây:

Cho hàm số f(x) liên tục trên R, có bảng biến thiên như hình vẽ dưới đây (ảnh 1)

Đặt \(g\left( x \right) = \left| {m + f\left( {x + 1} \right)} \right|\) (m là tham số). Tìm tất cả các giá trị của m để hàm số \(y = g\left( x \right)\) có đúng 3 điểm cực trị.

A. \(m < - 1\) hoặc \(m > 3\)


B. \[ - 1 < m < 3\]


C. \[m \le - 1\] hoặc \[m \ge 3\]


D. \[ - 1 \le m \le 3\]


* Đáp án

C

* Hướng dẫn giải

Đáp án C

Phương pháp giải:

Số điểm cực trị của hàm số \[y = \left| {f\left( x \right)} \right|\] = số điểm cực trị của hàm số \[y = f\left( x \right)\] + số giao điểm của đồ thị hàm số \[y = f\left( x \right)\] với trục hoành (không tính điểm tiếp xúc).

Giải chi tiết:

Dựa vào BBT ta thấy \[f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = {x_1}}\\{x = {x_2}}\end{array}} \right.\].

Đặt \[h\left( x \right) = m + f\left( {x + 1} \right)\] ta có \(h'\left( x \right) = f'\left( {x + 1} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x + 1 = {x_1}}\\{x + 1 = {x_2}}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = {x_1} - 1}\\{x = {x_2} - 1}\end{array}} \right.\), do đó hàm số \[h\left( x \right) = m + f\left( {x + 1} \right)\] có 2 điểm cực trị.

Suy ra để hàm số \[g\left( x \right) = \left| {h\left( x \right)} \right| = \left| {m + f\left( {x + 1} \right)} \right|\] có đúng 3 điểm cực trị thì phương trình \[m + f\left( {x + 1} \right) = 0\] phải có nghiệm bội lẻ duy nhất.

Ta có: \[m + f\left( {x + 1} \right) = 0 \Leftrightarrow f\left( {x + 1} \right) = - m\], dựa vào BBT ta thấy đường thẳng \[y = - m\] cắt qua (không tính điểm tiếp xúc) đồ thị hàm số \[y = f\left( {x + 1} \right)\] tại 1 điểm duy nhất khi và chỉ khi \[\left[ {\begin{array}{*{20}{l}}{ - m \ge 1}\\{ - m \le - 3}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m \le - 1}\\{m \ge 3}\end{array}} \right.\].

Copyright © 2021 HOCTAP247