Gọi F(x) là một nguyên hàm của hàm số

Câu hỏi :

Gọi F(x) là một nguyên hàm của hàm số \[f\left( x \right) = \frac{{{x^2}\sin x + 2x\cos x}}{{x\sin x + \cos x}}\]. Biết \[F\left( 0 \right) = 1,\] Tính giá trị biểu thức \[F\left( {\frac{\pi }{2}} \right).\]

A.\[\frac{{{\pi ^2}}}{2} + \ln \frac{\pi }{2} + 1\]

B. \[\frac{{{\pi ^2}}}{4} - \ln \frac{\pi }{2} + 1.\]

C. \[\frac{{{\pi ^2}}}{8}.\]

D. \[\frac{{{\pi ^2}}}{8} + \ln \frac{\pi }{2} + 1.\]Trả lời:

* Đáp án

* Hướng dẫn giải

Ta có \[f\left( x \right) = \frac{{{x^2}\sin x + x\cos x + x\cos x}}{{x\sin x + \cos x}} = x + \frac{{x\cos x}}{{x\sin x + \cos x}}\]

Khi đó

\[\smallint f\left( x \right){\rm{d}}x = \smallint \left( {x + \frac{{x\cos x}}{{x\sin x + \cos x}}} \right){\rm{d}}x = \smallint x{\rm{d}}x + \smallint \frac{{x\cos x}}{{x\sin x + \cos x}}{\rm{d}}x.\]

Đặt

\[t = x\sin x + \cos x \Leftrightarrow {\rm{d}}t = {\left( {x\sin x + \cos x} \right)^\prime }{\rm{d}}x = \left( {\sin x + x\cos x - \sin x} \right)dx = x\cos x\,{\rm{d}}x.\]

Suy ra

\[\smallint \frac{{x\cos x}}{{x\sin x + \cos x}}{\rm{d}}x = \smallint \frac{{{\rm{d}}t}}{t} = \ln \left| t \right| + C = \ln \left| {x\sin x + \cos x} \right| + C.\]

Do đó

\[\begin{array}{*{20}{l}}{F\left( x \right) = \smallint f\left( x \right){\rm{d}}x = \frac{{{x^2}}}{2} + \ln \left| {x\sin x + \cos x} \right| + C.}\\{ \Rightarrow F\left( 0 \right) = C = 1 \Rightarrow F\left( x \right) = \frac{{{x^2}}}{2} + \ln \left| {x\sin x + \cos x} \right| + 1.}\\{ \Rightarrow F\left( {\frac{\pi }{2}} \right) = \frac{{{\pi ^2}}}{8} + \ln \frac{\pi }{2} + 1.}\end{array}\]

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Sử dụng phương pháp đổi biến số để tìm nguyên hàm !!

Số câu hỏi: 19

Copyright © 2021 HOCTAP247