A.3
B.5
C.6
D.4
Ta có
\[I = \mathop \smallint \limits_0^{\frac{\pi }{4}} \frac{{\cos 2x}}{{{{\left( {\sin x - \cos x + 3} \right)}^2}}}dx = \mathop \smallint \limits_0^{\frac{\pi }{4}} \frac{{{{\cos }^2}x - {{\sin }^2}x}}{{{{\left( {\sin x - \cos x + 3} \right)}^2}}}dx = \mathop \smallint \limits_0^{\frac{\pi }{4}} \frac{{\left( {\cos x - \sin x} \right)\left( {\cos x + \sin x} \right)}}{{{{\left( {\sin x - \cos x + 3} \right)}^2}}}dx\]
Đặt\[sinx - cosx + 3 = t \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{(cosx + sinx)dx = dt}\\{cosx - sinx = 3 - t}\end{array}} \right.\]
Đổi cận\[x = 0 \Rightarrow t = 2;\,x = \frac{\pi }{4} \Rightarrow t = 3\]
Suy ra
\(I = \int\limits_2^3 {\frac{{(3 - t)dt}}{{{t^2}}}} = \int\limits_2^3 {\left( {\frac{3}{{{t^2}}} - \frac{1}{t}} \right)} dt = \left( { - \frac{3}{t} - \ln \left| t \right|} \right)\left| {_2^3} \right. = \frac{1}{2} + ln2 - ln3 = \frac{1}{2} + ln\frac{2}{3}\)
Hay \[a = \frac{1}{2};b = \frac{2}{3} \Rightarrow 2a + 3b = 3.\]
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247