A.16160
B.4040
C.2020
D.8080
Xét tích phân\[\mathop \smallint \limits_3^{2017} xf\left( x \right)dx\]
Đặt\[x = 2020 - t \Rightarrow dx = - dt\]
Đổi cận:\(\left\{ {\begin{array}{*{20}{c}}{x = 3 \Rightarrow t = 2017}\\{x = 2017 \Rightarrow t = 3}\end{array}} \right.\) khi đó ta có:
\[\begin{array}{l}\mathop \smallint \limits_3^{2017} xf\left( x \right)dx = - \int\limits_{2017}^3 {(2020 - t)f(2020 - t)dt} \\ = \mathop \smallint \limits_3^{2017} (2020 - x)f(2020 - x)dx\\ = \mathop \smallint \limits_3^{2017} (2020 - x)f(x)dx\\ = 2020\mathop \smallint \limits_3^{2017} f(x)dx - \mathop \smallint \limits_3^{2017} xf(x)dx\\ \Leftrightarrow 2\mathop \smallint \limits_3^{2017} xf(x)dx = 2020\mathop \smallint \limits_3^{2017} f(x)dx\\ \Leftrightarrow \mathop \smallint \limits_3^{2017} xf(x)dx = 1010.4\\ \Leftrightarrow \mathop \smallint \limits_3^{2017} xf(x)dx = 4040\end{array}\]
Đáp án cần chọn là: B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247