Gọi V là thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường

Câu hỏi :

Gọi V là thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường \[y = \sqrt x ,y = 0\;\] và x=4 quanh trục Ox . Đường thẳng \[x = a(0 < a < 4)\;\] cắt đồ thị hàm số \[y = \sqrt x \;\] tại M (hình vẽ bên).

A.\[a = 2\sqrt 2 \]

B. \[a = \frac{5}{2}\]

C. \[a = 2\]

D. \[a = 3\]

* Đáp án

* Hướng dẫn giải

Gọi V1 là thể tích khối tròn tạo thành khi quay quanh tam giác OMH quanh trục Ox. Biết rằng \[V = 2{V_{1\;}}\]. Khi đó:

Thể tích khối tròn xoay\(V = \pi \int\limits_0^4 {xdx = \pi \frac{{{x^2}}}{2}} \left| {_0^4} \right. = 8\pi \)

Suy ra\[{V_1} = 4\pi \]

Gọi N là giao điểm của đường thẳng x=a và trục hoành. Khi đó V1 là thể tích tạo được khi xoay hai tam giác OMN và MNH quanh trục Ox với N là hình chiếu của M trên OH.

Ta có \[{V_1} = \frac{1}{3}\pi .a.{\left( {\sqrt a } \right)^2} + \frac{1}{3}\pi .\left( {4 - a} \right).{\left( {\sqrt a } \right)^2} = \frac{4}{3}\pi a\]

Suy ra\[\frac{4}{3}\pi a = 4\pi \Rightarrow a = 3\]

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Ứng dụng tích phân để tính thể tích !!

Số câu hỏi: 20

Copyright © 2021 HOCTAP247