Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x=1 và x=3, biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ

Câu hỏi :

Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x=1 và x=3, biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ \[x\;(1 \le x \le 3)\] thì được thiết diện là một hình chữ nhật có độ dài hai cạnh là 3x và \[\sqrt {3{x^2} - 2.} \]

A.\[V = 32 + 2\sqrt {15} \]

B. \[V = \frac{{124\pi }}{3}\]

C. \[V = \frac{{124}}{3}\]

D. \[V = (32 + 2\sqrt {15} )\pi \]

* Đáp án

* Hướng dẫn giải

Diện tích mỗi mặt thiết diện sẽ là :\[S\left( x \right) = 3x\sqrt {3{x^2} - 2} \]

\[V = \mathop \smallint \nolimits_1^3 3x\sqrt {3{x^2} - 2} dx = \frac{{124}}{3}\]

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Ứng dụng tích phân để tính thể tích !!

Số câu hỏi: 20

Copyright © 2021 HOCTAP247