Tính thể tích khi S = { y = x^2 − 4 x + 6 ; y = − x^2 − 2 x + 6 } quay quanh trục Ox.

Câu hỏi :

Tính thể tích khi \[S = \left\{ {y = {x^2} - 4x + 6;\,\,y = - \,{x^2} - 2x + 6} \right\}\] quay quanh trục Ox.

A.\[V = 3.\]

B. \[V = \frac{\pi }{3}.\]

C. \[V = \pi .\]

D. \[V = 3\pi .\]

* Đáp án

* Hướng dẫn giải

Hoành độ giao điểm của hai parabol là\[{x^2} - 4x + 6 = - {x^2} - 2x + 6 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 1}\end{array}} \right.\]

Trong khoảng (0;1) thì\[12{x^3} - 36{x^2} + 24x > 0\]  nên:

Thể tích vật tròn xoay cần tính là \[V = \pi \mathop \smallint \limits_0^1 \left| {{{\left( {{x^2} - 4x + 6} \right)}^2} - {{\left( { - \,{x^2} - 2x + 6} \right)}^2}} \right|{\rm{d}}x\]

\( = \pi \int\limits_0^1 {(12{x^3} - 36{x^2} + 24x)dx = \pi (3{x^4} - 12{x^3} + 12{x^2})} \left| {_0^1} \right. = 3\pi \)

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Ứng dụng tích phân để tính thể tích !!

Số câu hỏi: 20

Copyright © 2021 HOCTAP247