Thể tích khối tròn xoay sinh ra bởi phép quay xung quanh Ox của hình giới hạn bởi trục Ox và parabol

Câu hỏi :

Thể tích khối tròn xoay sinh ra bởi phép quay xung quanh Ox của hình giới hạn bởi trục Ox và parabol \[(P):y = {x^2} - ax(a > 0)\;\]bằng V=2. Khẳng định nào dưới đây đúng ?

A.\[a \in \left( {\frac{1}{2};1} \right).\]

B.\[a \in \left( {1;\frac{3}{2}} \right).\]

C. \[a \in \left( {\frac{3}{2};2} \right).\]

D. \[a \in \left( {2;\frac{5}{2}} \right).\]

* Đáp án

* Hướng dẫn giải

Phương trình hoành độ giao điểm của (P) và Ox là\[{x^2} - ax = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = a}\end{array}} \right.\]

Khi đó, thể tích cần xác định cho bởi

\[V = \pi \mathop \smallint \limits_0^a {\left( {{x^2} - ax} \right)^2}{\rm{d}}x = \pi \mathop \smallint \limits_0^a \left( {{x^4} - 2a{x^3} + {a^2}{x^2}} \right){\rm{d}}x\]

\( = \pi \left( {\frac{{{x^5}}}{5} - \frac{{{\rm{a}}{{\rm{x}}^4}}}{2} + \frac{{{a^2}{x^3}}}{3}} \right)\left| {_0^a} \right. = \frac{{\pi {a^5}}}{{30}}\)

Mặt khác\[V = 2 \Rightarrow \frac{{\pi {a^5}}}{{30}} = 2 \Leftrightarrow a = \sqrt[5]{{\frac{{60}}{\pi }}} \in \left( {\frac{3}{2};2} \right).\]

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Ứng dụng tích phân để tính thể tích !!

Số câu hỏi: 20

Copyright © 2021 HOCTAP247