A.\[V = 6{\pi ^2}.\]
B. \[V = 4{\pi ^2}.\]
C. \[V = 2{\pi ^2}.\]
D. \[V = 8{\pi ^2}.\]
Xét\[\left( C \right):{x^2} + {\left( {y - 2} \right)^2} = 1\] có tâm\[I\left( {0;2} \right),\] bán kính\[R = 1.\] Như vậy
Nửa (C) trên ứng với \[2 \le y \le 3\] có phương trình\[y = {f_1}\left( x \right) = 2 + \sqrt {1 - {x^2}} \] với\[x \in \left[ { - \,1;1} \right].\]
Nửa (C) dưới ứng với\[1 \le y \le 2\] có phương trình\[y = {f_2}\left( x \right) = 2 - \sqrt {1 - {x^2}} \] với\[x \in \left[ { - \,1;1} \right].\]
Khi đó, thể tích khối tròn xoay cần tính là
\[V = \pi \mathop \smallint \limits_{ - {\kern 1pt} 1}^1 \left[ {{{\left( {2 + \sqrt {1 - {x^2}} } \right)}^2} - {{\left( {2 - \sqrt {1 - {x^2}} } \right)}^2}} \right]\,{\rm{d}}x = 8\pi \mathop \smallint \limits_{ - {\kern 1pt} 1}^1 \sqrt {1 - {x^2}} \,{\rm{d}}x.\]
Đặt\[x = \sin t \Leftrightarrow {\rm{d}}x = \cos t\,{\rm{d}}t\] và đổi cận\(\left\{ {\begin{array}{*{20}{c}}{x = - 1 \Rightarrow t = - \frac{\pi }{2}}\\{x = 1 \Rightarrow t = \frac{\pi }{2}}\end{array}} \right.\)
Khi đó
\[\;V = 8\pi \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\sqrt {co{s^2}t} } .costdt = 4\pi \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {(1 + cos2t)dt = 4\pi \left( {t + \frac{1}{2}sin2t} \right)} \left| {_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} = 4{\pi ^2}} \right.\]
Đáp án cần chọn là: B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247