Trang chủ Đề thi & kiểm tra Khác Thể tích khối hộp !! Cho hình lăng trụ ABCD.A′B′C′D′ có đáy ABCD là hình...

Cho hình lăng trụ ABCD.A′B′C′D′ có đáy ABCD là hình thoi cạnh a và góc

Câu hỏi :

Cho hình lăng trụ ABCD.A′B′C′D′ có đáy ABCD là hình thoi cạnh a và góc \(\widehat A = {60^0}\). Chân đường cao hạ từ B′  xuống (ABCD)  trùng với giao điểm 2 đường chéo, biết BB′=a . Thể tích khối lăng trụ là:

A.\[\frac{{3{a^3}}}{2}\]

B. \[\frac{{3{a^3}}}{8}\]

C. \[\frac{{3{a^3}}}{4}\]

D. \[\frac{{{a^3}}}{4}\]

* Đáp án

* Hướng dẫn giải

Cho hình lăng trụ ABCD.A′B′C′D′ có đáy ABCD là hình thoi cạnh a và góc (ảnh 1)

Gọi \[O = AC \cap BD\]

Xét tam giác ABD có\[AB = AD = a\]và\[\widehat {BAD} = {60^0} \Rightarrow {\rm{\Delta }}ABD\]đều cạnh\[a \Rightarrow BD = a \Rightarrow BO = \frac{a}{2}\]

\[ \Rightarrow B'O \bot \left( {ABCD} \right) \Rightarrow B'O \bot BO \Rightarrow {\rm{\Delta }}BB'O\]vuông tại O

\[ \Rightarrow B'O = \sqrt {B{B^{\prime 2}} - B{O^2}} = \sqrt {{a^2} - \frac{{{a^2}}}{4}} = \frac{{a\sqrt 3 }}{2}\]

\[{S_{ABD}} = \frac{{{a^2}\sqrt 3 }}{4} \Rightarrow {S_{ABCD}} = 2{S_{ABD}} = \frac{{{a^2}\sqrt 3 }}{2}\]

Vậy\[{V_{ABCD.A'B'C'D'}} = B'O.{S_{ABCD}} = \frac{{a\sqrt 3 }}{2}.\frac{{{a^2}\sqrt 3 }}{2} = \frac{{3{a^3}}}{4}\]Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Thể tích khối hộp !!

Số câu hỏi: 68

Copyright © 2021 HOCTAP247