Trang chủ Đề thi & kiểm tra Khác Thể tích khối hộp !! Cho lăng trụ ABC.A′B′C′ có đáy ABC là tam giác...

Cho lăng trụ ABC.A′B′C′ có đáy ABC là tam giác đều cạnh a, và

Câu hỏi :

Cho lăng trụ ABC.A′B′C′ có đáy ABC  là tam giác đều cạnh a, và \[A\prime A = A\prime B = A\prime C = a\sqrt {\frac{7}{{12}}} \;\]. Thể tích khối lăng trụ ABC.A′B′C′ theo a là:

A.\[\frac{{{a^3}}}{8}\]

B. \[\frac{{{a^3}\sqrt 3 }}{8}\]

C. \[\frac{{3{a^3}\sqrt 3 }}{8}\]

D. \[\frac{{{a^3}\sqrt 3 }}{4}\]

* Đáp án

* Hướng dẫn giải

Gọi H là tâm tam giác đều ABC . Vì\[A'A = A'B = A'C\] nên hình chóp\[A'.ABC\] là đều nên\[A'H \bot \left( {ABC} \right)\]

Gọi I là trung điểm của AB.

Cho lăng trụ ABC.A′B′C′ có đáy ABC  là tam giác đều cạnh a, và  (ảnh 1)

Vì tam giác ABC đều cạnh a nên\[CI = \frac{{a\sqrt 3 }}{2} \Rightarrow HI = \frac{1}{3}CI = \frac{{a\sqrt 3 }}{6}\]

Tam giác A′AB  cân tại A′  nên\[A'I \bot AB \Rightarrow {\rm{\Delta }}A'AI\] vuông tại

\[I \Rightarrow A'I = \sqrt {A{A^{\prime 2}} - A{I^2}} = \sqrt {\frac{{7{a^2}}}{{12}} - \frac{{{a^2}}}{4}} = \frac{a}{{\sqrt 3 }}\]

\[A'H \bot \left( {ABC} \right) \Rightarrow A'H \bot HI \Rightarrow {\rm{\Delta }}A'HI\] vuông tại

\[H \Rightarrow A'H = \sqrt {A'{I^2} - H{I^2}} = \sqrt {\frac{{{a^2}}}{3} - \frac{{{a^2}}}{{12}}} = \frac{a}{2}\]

Vì tam giác ABC đều cạnh a nên\[{S_{ABC}} = \frac{{{a^2}\sqrt 3 }}{4}\]

Vậy\[{V_{ABC.A'B'C'}} = A'H.{S_{ABC}} = \frac{a}{2}.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^3}\sqrt 3 }}{8}\]

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Thể tích khối hộp !!

Số câu hỏi: 68

Copyright © 2021 HOCTAP247