Trang chủ Đề thi & kiểm tra Khác Thể tích khối hộp !! Cho hình lăng trụ ABCD.A′B′C′D′ có đáy ABCD là hình...

Cho hình lăng trụ ABCD.A′B′C′D′ có đáy ABCD là hình chữ nhật với

Câu hỏi :

Cho hình lăng trụ ABCD.A′B′C′D′ có đáy ABCD là hình chữ nhật với \[AB = \sqrt 3 ,AD = \sqrt 7 \]. Hai mặt bên \[(ABB\prime A\prime )\;\;\]và \[(ADD\prime A\prime )\;\;\]lần lượt tạo với đáy những góc 450 và 600. Tính thể tích khối hộp nếu biết cạnh bên bằng 1.

A.V=3

B. V=2

C.V=4         

D.V=8

* Đáp án

* Hướng dẫn giải

Cho hình lăng trụ ABCD.A′B′C′D′ có đáy ABCD là hình chữ nhật với (ảnh 1)

Kẻ\[A'H \bot \left( {ABCD} \right);HM \bot AB;HN \bot AD\]

Ta có:\(\left. {\begin{array}{*{20}{c}}{A\prime H \bot AB}\\{HM \bot AB}\end{array}} \right\} \Rightarrow AB \bot (A\prime HM) \Rightarrow AB \bot A\prime M\)

\(\left. {\begin{array}{*{20}{c}}{(ABB\prime A\prime ) \cap (ABCD) = AB}\\{(ABB\prime A\prime ) \supset A\prime M \bot AB}\\{(ABCD) \supset HM \bot AB}\end{array}} \right\} \Rightarrow ((ABB\prime \widehat {A\prime );(A}BCD)) = (A\prime \widehat {M;H}M) = \widehat {A\prime MH} = {45^o}\)

Chứng minh tương tự ta có\[\widehat {A'NH} = {60^0}\]

Đặt A′H=x khi đó ta có:

\[A'N = \frac{x}{{\sin 60}} = \frac{{2x}}{{\sqrt 3 }},AN = \sqrt {A{A^{\prime 2}} - A'{N^2}} = \sqrt {1 - \frac{{4{x^2}}}{3}} = HM\]

Mà \[HM = x.\cot 45 = x\]

\[ \Rightarrow x = \sqrt {1 - \frac{{4{x^2}}}{3}} \Leftrightarrow {x^2} = 1 - \frac{{4{x^2}}}{3} \Leftrightarrow \frac{{7{x^2}}}{3} = 1 \Rightarrow {x^2} = \frac{3}{7} \Rightarrow x = \sqrt {\frac{3}{7}} \]

\[{S_{ABCD}} = \sqrt 3 .\sqrt 7 = \sqrt {21} \]Vậy\[{V_{ABCD.A'B'C'D'}} = A'H.{S_{ABCD}} = \sqrt {\frac{3}{7}} .\sqrt {21} = 3\]

Đáp án cần chọn là: A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Thể tích khối hộp !!

Số câu hỏi: 68

Copyright © 2021 HOCTAP247